ASTRONOMY CLUB OF TULSAOBSERVER January 2001 http://www.b-its.com/astroclub ACT, Inc. has been meeting continuously since 1937 and was incorporated in 1986. It is a nonprofit; tax deductible organization dedicated to promoting, to the public, the art of viewing and the scientific aspect of astronomy. WhatAstronomy Club of Tulsa Meeting WhenFriday, January 12, 2001 at 7:30 PMIF TULSA SCHOOLS ARE CLOSED ON JAN 12, OUR MEETING WILL ALSO BE CANCELED. WhereRoom M1 inside Keplinger Hall, the Science & Engineering Building at TU. Enter the parking lot on the East Side of Keplinger Hall from Harvard and 5th Street. This will take you directly toward the staircase to enter the building. Room M1 is the first room on the left. |
|
JANUARY |
|
|
|
|
12th-14th |
Friday |
17:00 |
Troop 99 Camp out |
|
19th-20th |
Friday |
17:00 |
Club Star Party |
|
|
|
|
|
|
FEBRUARY |
|
|
|
|
23rd-24th |
Friday |
18:00 |
Club Star Party |
|
|
|
|
|
|
MARCH |
|
|
|
|
5th |
Monday |
? |
(At Collinsville) |
|
12th |
Monday |
? |
(At Collinsville) |
![]()
How "Observant" are you?
As a group who like to "observe", how many of you observed an Astronomy Club of Tulsa member in the January issue of Sky & Telescope wearing an ACT t-shirt?
![]()
January SKY FORUM
By Don Cole
Let us start off this new year (and by the way HAPPY NEW YEAR 2001 TO YOU ALL) by looking at some different types of star formations or groupings, such as:
Galaxies are massive collections of hundreds of millions of stars, all gravitationally interacting, and orbiting about a common center. All the stars visible to the unaided eye at night from earth belong to the earth's galaxy, the Milky Way. The sun with its associated planets is just one star in this galaxy. Besides stars and planets, galaxies contain clusters of stars; atomic hydrogen gas; molecular hydrogen; complex molecules composed of hydrogen, nitrogen, carbon, and silicon, among others; and cosmic rays.
The Persian astronomer, al-Sufi (903-36), is credited with first describing the spiral galaxy seen in the constellation Andromeda. By the middle of the 18th century, only three galaxies had been identified. In 1780, the French astronomer Charles Messier (1730-1817) published a list that included 32 galaxies. These galaxies are now identified by their Messier (M) numbers. The Andromeda galaxy, for example, is known among astronomers as M31.
Thousands of galaxies were identified and cataloged by the British astronomers Sir William and Caroline Herschel and Sir John Herschel, during the early part of the 19th century. Since 1900 galaxies have been discovered in large numbers by photographic searches. Galaxies at enormous distances from earth appear so tiny on a photograph that they can hardly be distinguished from stars. The largest known galaxy has about 13 times as many stars as the Milky Way.
In 1912 the American astronomer Vesto M. Slipher (1875-1969), working at the Lowell Observatory in Arizona, discovered that the lines in the spectrum of all galaxies were shifted toward the red spectral region (see Red Shift below). This was interpreted by the American astronomer Edwin Hubble as evidence that all galaxies are moving away from one another and led to the conclusion that the universe is expanding. It is not known if the universe will continue to expand or if it contains sufficient matter to slow down the galaxies gravitationally so they will eventually begin contracting to the point from which they arose.
Classification of Galaxies
When viewed or photographed with a large telescope, only the nearest galaxies exhibit individual stars. For most galaxies, only the combined light of all the stars is detected. Galaxies exhibit a variety of forms. Some have an overall globular shape, with a bright nucleus surrounded by a luminous structureless disk. Such galaxies, called ellipticals, contain a population of old stars, usually with little apparent gas or dust, and few newly formed stars. Elliptical galaxies come in a vast range of sizes, from giant to dwarf.
In contrast, spiral galaxies are flattened disk systems containing not only some old stars but also large populations of young stars, much gas and dust, and molecular clouds that are the birthplace of stars. Often the regions containing bright young stars and gas clouds are arranged in long spiral arms that can be observed to wind around the galaxy. Generally a halo of faint older stars surrounds the disk; a smaller nuclear bulge often exists, emitting two jets of energetic matter in opposite directions.
Other disk like galaxies, with no overall spiral form, are classified as irregulars. These galaxies also have large amounts of gas, dust, and young stars, but no arrangement of a spiral form. They are usually located near larger galaxies, and their appearance is probably the result of a tidal encounter with the more massive galaxy. Some extremely peculiar galaxies are located in close groups of two or three, and their tidal interactions have caused distortions of spiral arms, producing warped disks and long streamer tails.
Quasars are objects that appear stellar or almost stellar, but their enormous red shifts identify them as objects at very large distances (see Quasar below). Most astronomers now believe that quasars are active galaxies whose nucleii contain enormous black holes. They are probably closely related to radio galaxies and to BL Lacertae objects.
In viewing a galaxy with a telescope, inferring its distance is impossible, for it may be a gigantic galaxy at a large distance or a smaller one closer to earth. Astronomers estimate distances by comparing the brightness or sizes of objects in the unknown galaxy with those in the earth's galaxy. The brightest stars, supernovas, star clusters, and gas clouds have been used for this purpose. Cepheid variables, stars the brightness of which varies periodically, are especially valuable because the period of pulsation is related to the intrinsic brightness of the star. By observing periodicity, the true brightness can be computed and compared with the apparent brightness; distance can then be inferred. Recently astronomers have learned that the speed of the stars as they orbit the center of their galaxy depends on the intrinsic brightness and mass of that galaxy. Rapidly rotating galaxies are extremely luminous; slowly rotating ones are intrinsically faint. If the orbital velocities of stars in a galaxy can be determined, then the distance of that galaxy can be inferred.
Distribution of Galaxies
Galaxies are generally not isolated in space but are often members of small or moderate-sized groups, which in turn form large clusters of galaxies. The earth's galaxy is one of a small group of about 20 galaxies that astronomers call the Local Group. The earth's galaxy and the Andromeda galaxy are the two largest members, each with a million million stars. The Large, Small, and Mini Magellanic Clouds are nearby satellite galaxies, but each is small and faint, with about 100 million stars.
The nearest cluster is the Virgo cluster; the Local Group is an outlying member of the cluster, which contains thousands of galaxies of many types. They all share a common direction of motion, the cause of which might be a super cluster hidden from view by our own galaxy, since super clusters up to 300 million light-years across are known. Some theorists suggest instead that a cosmic "string" a one-dimensional flaw in the fabric of space-time, could be the cause.
Overall, the distribution of clusters and super clusters in the universe is not uniform. Instead, super clusters of tens of thousands of galaxies are arranged in long, stringy, lacelike filaments, arranged around large voids. The Great Wall, a galactic filament discovered in 1989, stretches across more than half a billion light-years of space. Cosmologists theorize that "dark matter," a hypothetical material that neither radiates nor reflects light, has sufficient mass to generate the gravitational fields responsible for the heterogeneous structure of the universe.
Rotation of Spiral Galaxies
Stars and gas clouds orbit about the center of their galaxy. Orbital periods are more than 100 million years. These motions are studied by measuring the positions of lines in the galaxy spectra. In spiral galaxies, the stars move in circular orbits, with velocities that increase with increasing distances from the center. At the edges of spiral disks, velocities of 300 km/sec (about 185 mi/sec) have been measured at distances as great as 150,000 light-years.
This increase in velocity with increase in distance is unlike planetary velocities in the solar system, for example, where the velocities of planets decrease with increasing distance from the sun. This difference tells astronomers that the mass of a galaxy is not as centrally concentrated as is the mass in the solar system. A significant portion of galaxy mass is located at large distances from the center of the galaxy, but this mass has so little luminosity that it has only been detected by its gravitational attraction. Studies of velocities of stars in external galaxies have led to the belief that much of the mass in the universe is not visible as stars. Its exact nature is unknown at present.
Radiation from a Galaxy
Knowledge of the appearance of a galaxy is based on optical observations. Knowledge of the composition and motions of the individual stars comes from spectral studies in the optical region also. Because the hydrogen gas in the spiral arms of a galaxy radiates in the radio portion of the electromagnetic spectrum, many details of galactic structure are learned from studies in the radio region. The warm dust in the nucleus and spiral arms of a galaxy radiates in the infrared portion of the spectrum. Some galaxies radiate more energy in the optical region.
Recent X-ray observations have confirmed that galactic halos contain hot gas, gas with temperatures of millions of degrees. X-ray emission is also observed from objects as varied as globular clusters, supernova remnants, and hot gas in clusters of galaxies. Observations in the ultraviolet region also reveal the properties of the gas in the halo, as well as details of the evolution of young stars in galaxies.
*** Astronomy Dictionary ***
RED SHIFT: A shift toward longer wavelengths observed in the lines of spectra of celestial objects. The American astronomer Edwin Powell Hubble, in 1929, linked the red shift observed in spectra of galaxies to the expansion of the universe. Hubble theorized that this red shift, called the cosmological red shift, is caused by the Doppler effect and hence indicates the speed of recession of the galaxies-and, by using Hubble's law, the distances of the galaxies.
QUASAR: An acronym for quasi-stellar radio source, any of the blue, star like objects that are strong radio emitters and the spectra of which exhibit a strong red shift. Quasars were identified as sources of intense radio emission in the late 1950s. In 1960, using the 200-in. (508-cm) telescope on Mount Palomar in California to observe the positions of these radio sources, astronomers discovered objects the spectra of which showed emission lines that could not be identified. In 1963 the Dutch- American astronomer Maarten Schmidt discovered that these unidentified emission lines in the spectrum of quasar 3C 273 were known lines that exhibited a far stronger red shift than in any other known object.
One known cause of red shift is the Doppler effect, which shifts the wavelength of emitted light of celestial objects toward the red (longer wavelengths, see above) when the objects are moving away from the earth because of the expansion of the universe. This red shift is called cosmological, and from the amount of red shift astronomers can calculate the recession velocity. Hubble's law, which states that recession velocity caused by the expansion of the universe is directly proportional to the distance of the object, indicates that quasar 3C 273 is 1.5 billion light-years from the earth.
QUIZ QUESTION: Do you think you could find and observe 3C 273? If so where in the sky and what time of the year could it be viewed?
So until next month Dark Skies and Steady Seeing to You ...................
Reference Material :: "Astronomy, A self-teaching guide." by Dinah L. Moche (4th ed.) "Guide to the Stars" by Leslie Peltier. " Astronomy, For the Earth to the Universe" by Jay M. Pasachoff (3rd ed.) "Microsoft "Encarta"
![]()
Hands-On Universe
Dear Astronomy Enthusiast:
We want to explore with you a way in which we can collaborate. The Hands-On Universe Project (HOU) is a novel and innovative astronomy education program supported by the National Science Foundation. HOU enables students to investigate the universe while applying tools and concepts from science, math, and technology. High school teachers and students are provided image processing tools, data in the form of CCD images, and the skills needed to conduct basic astronomy research. In analyzing this data, students throughout the United States, Sweden, Japan, Germany, France, Italy, Senegal, and Australia are given the opportunity to explore astronomical projects together. Please visit our website for further details.
Hands-On Universe has experienced great success in past years. In 1994 two of our students from Oil City, Pennsylvania provided some of the earliest supernovae data on record with their images of SN 1994I in the Whirlpool Galaxy. In 1998 two of our students in Northfield, Massachusetts discovered Kuiper Belt Object 1998FS144 through the Hands-On Universe Asteroid Search. Although these have been our most prominent success stories, there are many day-to-day examples of students and teachers who have been turned on to astronomy through HOU as well.
At this point Hands-On Universe is working to establish one of the first global networks of robotic telescopes available to high schools. While this plan continues to go through its research and development phases, we are finding a strong need for new data and individuals who would be willing to work with teachers throughout the country to acquire this new data. It is for this reason that we are seeking your help.
Members of amateur astronomy organizations not only have a wealth of experience and equipment, but also the common goal of sharing the wonder of our universe with others. HOU is seeking the help of skilled amateur astronomers nationwide who would be willing to work with our teachers. Over the past seven years HOU has been training teachers in basic astronomy research skills. We would be asking that individual amateurs or groups work with these classroom teachers to provide CCD images, observing tips, and other astronomical resources. In return, Hands-On Universe will make its image processing software available, and provide access to our large image archive and other web resources.
Please pass this letter on to those in your organization who would be interested in becoming part of the Hands-On Universe Amateur Astronomer - Education Outreach Network. Participating amateurs or professionals will be listed at our website, and contacted by teachers in their region for assistance. Any interested amateurs should sign up on the HOU website.
In addition, if you know of any teachers in your region who may be interested in HOU training, please direct them to our web site for our professional development opportunity funded by National Science Foundation.
Thank you so much for your time and consideration. If you have any further questions please feel free to contact Dr. Carl Pennypacker at (510) 486-7429 or send e-mail to pennypacker@lbl.gov. We look forward to having you as part of our astronomy education team.
Sincerely,
Carl Pennypacker
Hughes Pack
Tim Spuck
HOU Project Co-Director
Astronomy Educator
Region Astronomical Society
Miho Rahm
Project Manager
Hands-On Universe
Lawrence Hall of Science #5200
University of California
Berkeley, CA 94720-5200
Email: houstaff@hou.lbl.gov
Voice (510) 642-0552
FAX (510) 642-1055
![]()
Astronomy Club of Tulsa, 918.688.MARS
President: John Land
Vice President: Dennis Mishler
Secretary: Teresa Kincannon
Treasurer: Nick Pottorf
RMCC Observatory Manager: Gerry Andries
Observing Chairman: David Stine
Web Master: Tom McDonough
New Membership: Dennis Mishler
Librarian: Ed Reinhart
Education Coordinator: Scott Parker